Histological evidence of trauma in tusks of southern
African dicynodonts
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Dicynodonts were a clade of globally-distributed therapsids known for their abundance in the fossil record and for surviving the
Permo-Triassic mass extinction. The group had distinctive dental adaptations including a beak and, in many species, paired maxillary
tusks. The function of these tusks has long been of interest, yet remains poorly understood. We report here on two instances of unusual
morphology in tusk dentine from specimens of: 1) Lystrosaurus from the Karoo Basin of South Africa and, 2) an unidentified
dicynodontoid from the Luangwa Basin of Zambia. In both, the cross-sectional shape of the tusk root is lobed and infolded, which
histological features suggest is a result of abnormal dentine deposition. We infer that this abnormal morphology is likely the conse-
quence of trauma given its reparative nature and structural similarities to trauma-related morphologies reported in the tusks of modern
elephants. This study demonstrates that histological sampling of dicynodont tusks can shed light on the biology of this important clade
of therapsids.
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INTRODUCTION

Dicynodonts evolved one of the most specialized food
processing systems within the synapsid lineage, charac-
terized by a horn-covered beak and (oftentimes) maxillary
tusks, along with a distinctive jaw hinge (Crompton &
Hotton 1967; Angielczyk 2004). Enlarged, paired tusks,
which are the namesake of the clade, have long intrigued
palaeontologists with proposed functions including
foraging for food, sexual dimorphism in some species and
burrowing behaviours (Sullivan et al. 2002; Ray et al. 2005;
Modesto & Botha-Brink 2010; Botha-Brink 2017). Despite
this variety of proposed roles, gross morphological
evidence has provided little insight into the function of
dicynodont tusks.

Here we describe the histology of two tusks and their
surrounding hard tissues in specimens of Lystrosaurus
from the Karoo Basin of South Africa and an indetermi-
nate dicynodontoid (possibly Dicynodon) from the
Luangwa Basin of Zambia. Unusually, these specimens
preserve anatomy consistent with a developmental
anomaly or pathology, although non-pathological
infolded dentine (i.e. plicidentine) is seen in some
pelycosaur-grade synapsids (Brink et al. 2014). Based on
comparisons with modern tusked animals, we conclude
that trauma is the most likely explanation for this anoma-
lous dentine anatomy, which can provide insight into the
function of tusks in at least some dicynodonts.

MATERIALS AND METHODS
The tusk and surrounding alveolar jaw bone of the
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dicynodont specimens were prepared and thin-sectioned
following standard methods (Lamm 2013). In both speci-
mens, the tusks were broken where they emerge from the
maxillae, but preserve most of the root portion of the
tusks. Thin sections were made perpendicular to the long
axis of the tusk, ground to a thickness of approximately
100 pm, and imaged with a Nikon Eclipse LV100POL
microscope and NIS-Elements software.

SYSTEMATIC PALAEONTOLOGY
Synapsida Osborn, 1903
Therapsida Broom, 1905
Dicynodontia Owen, 1859
Dicynodontoidea Owen, 1859

Dicynodontoidea indet.

Referred specimen. NHCC LB836, tusk-bearing left and
right maxillae from one individual.

Locality. This specimen was collected from locality L424,
a medium-sized outcrop of the upper member of the
Madumabisa Mudstone Formation near the southern
border North Luangwa National Park (Northern Prov-
ince, Zambia). Detailed locality information is available
from NHCC or the authors.

Lystrosaurus Cope, 1870

Lystrosaurus indet.

Referred specimens. SAM-PK-K011603, tusk-bearing right
maxilla; SAM-PK-K011604, partial skull, including orbits
and snout.

Locality. SAM-PK-K011603 was collected near the bound-
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ary between the farms Weltrevreden and Ripplemead
(Nieu Bethesda District, Eastern Cape Province) by Dr
Roger Smith as field number RS 337, from rocks of the
Triassic upper Palingkloof Member of the Balfour Forma-
tion (Lystrosaurus Assemblage Zone; Smith & Botha-Brink
2014). SAM-PK-K011604 was also collected by Dr Roger
Smith from Lower Triassic rocks on the farm Donald 207
(Fairydale) in the Bethulie District, Eastern Cape Prov-
ince, approximately 54 metres above the inferred
Permo-Triassic boundary.

DESCRIPTION

Gross anatomy

SAM-PK-K011603 is an incomplete right maxilla pre-
serving much of the lateral surface, including the palatal
ramus, caniniform process, and a small section of the
anterior process (Fig. 1a). Based on its size and anatomy,
we refer it to Lystrosaurus sp., which accords well with its
stratigraphic position, as there are no other dicynodont
genera known from the Triassic portion of the Palingkloof
Member of the Balfour Formation (Smith & Botha-Brink
2014).

Embedded within the maxillais a section of tusk approx-
imately 5 cm long, although it is only visible emerging
from the dorsal and ventral surfaces of the bone. Approxi-
mately 5 mm of erupted crown is preserved with not
enough material preserved to examine wear facets. Based
on what is visible and the curve of the caniniform process,
the root is slightly recurved and it tapers in diameter
towards the occlusal surface. The root of SAM-PK-
K011603 is damaged apically, but another, more complete
Lystrosaurus specimen (SAM-PK-K011604) was sectioned
longitudinally and reveals a wide open root with a distinct
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funnel-shaped pulp cavity (Fig. 1b), indicative of an ever-
growing tusk (Steenkamp 2003).

NHCC LB836 includes associated left and right maxillae
that contain incomplete tusks (Fig. 2). The caniniform
processes of the maxillae are angled slightly perpendicu-
lar to the dorsoventral axis and more rugose than the
surrounding maxillary bone (Fig. 2a). The left maxilla
includes approximately 7.5 cm of tusk and the right is
slightly more complete, preserving 8.4 cm of tusk includ-
ing more of its dorsal portion. On both sides, the dorsal
portion of the maxillae are broken to expose their interior
anatomy as well as the roots of the tusks. On the right side,
this broken surface exposes what appears to be regularly
deposited dentine in a circular cross-sectional shape. The
left side, however, reveals that the root of the tusk has
deeply infolded dentine, which is visible macroscopically
(Fig. 2b). Essentially none of the functional tusk is pre-
served on either side, including potential wear facets.

Histology

The tusk of SAM-PK-K011603 is composed of dentine
with no outer capping tissue such as enamel or cementum
preserved, although the lack of cementum in the
preeruptive root could be preservational. From the root
end (i.e. apex in standard dental terminology; Fehrenbach
& Popowics 2016) towards the tip of the tusk, the
cross-sectional shape of the tusk changes from having an
unusual wavier border to a more expected circular one.
The wavy margin is the surface expression of the infolding
of the underlying dentine, which can extend deep to near
the pulp cavity (Fig. 3a). Towards the tip end, the
infoldings gradually become shallower and less exagger-
ated (Fig. 3b—d) until no irregularities are present (Fig. 3d).
The most dramatic infolding is present on the anterior

Figure 1. Gross anatomy and histology of Lystrosaurus tusks. A, Cast of SAM-PK-K011603 in right lateral view. B, Thin section of SAM-PK-K011604
with an open, funnel-shaped pulp cavity indicative of an ever-growing tusk. Scale bars equal: A, 3 cm; B, 5 mm. Abbreviations: ab, alveolar bone;

de, dentine; pc, pulp cavity.
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Figure 2. Gross anatomy and thin sections of dicynodontoid (NHCC LB836). A, Schematic representing where sections were taken from the patho-
logical right tusk and the associated, normal left maxilla in left lateral view. B, Natural break showing the pathological right tusk root with anterior
towards the top of the page. C, Thin section showing infolding near root end of tusk. D, Thin section taken near ventral end of maxilla showing less
pronounced infolding. E, Boundary between more compact jaw bone and more vascularized alveolar bone. F, High magnification view of the
periodontal space between the tusk root and alveolar bone. Scale bars equal: A-B, 1 cm; C-D, 5000 um; E, 250 um; E 50 um. Abbreviations: ab, alveolar
bone; ce, cementum; de, dentine; jb, jaw bone; pc, pulp cavity; ps, periodontal space; sf, Sharpey’s fibres.

margin of the root and continues with wavy margins on approximately 20 um apart, which correspond to the 5-
the medial and posterior edges (Fig. 3a—c). day increments of lines of von Ebner in mammals (Simmer

The two predominant histological features of dentine, et al. 2008), are visible in this specimen (Fig. 3e—f). Both the
dentine tubules and incremental growth marks spaced dentine tubules and lines of von Ebner follow normal
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Figure 3. Thin sections of Lystrosaurus sp. (SAM-PK-K011603) taken at four locations along the apical-occlusal axis. A-D, Thin sections detailing the
changes in unusual dentine morphology from the apical-most section with the most dramatic irregularities (A) to the occlusal-most section with
regular morphology (D). E, Boxed portion of section (A) at high magnification detailing dentine infolding and periodontal space. F, Boxed portion of
section (B) at high magnification detailing reduced but continued infolding. Scale bars equal: A-D, 2mm; E-F, 500 um. Abbreviations: ab, alveolar
bone; de, dentine; pc, pulp cavity; ps, periodontal space.

patterns in non-lobed portions of the tusk with the
tubules radiating out from the pulp cavity and growth
marks concentrically organized around the tusk. In the
abnormal portions of the root, however, both features
mirror the shape of its folded and irregular circumference.

The surrounding alveolar bone is composed of highly
vascularized woven-fibred bone with primary osteons
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(i.e. fibrolamellar bone sensu Francillon-Viellot et al. 1990)
with longitudinally oriented canals and evidence of
extensive remodeling. A periodontal space is present
between the tusk and the surrounding alveolar bone
ranging in thickness from 90 um to 500 pm. In sections
taken both apically and towards the erupted end of the
root, Sharpey’s fibres running perpendicular to the
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periodontal space are abundant and provide evidence of a
soft-tissue periodontal ligamentous tooth attachment.

Unlike the left tusk of NHCC LB836, which appears to
have regular dentine (Fig. 2a), the right side displays an
irregular, infolding of dentine similar to that seen in
SAM-PK-K011603. An open root and the abnormal
dentine were apparent in the field when the specimen
was collected due to breakage of the maxilla and its expo-
sure of the apical portion of the tusk root (Fig. 2b). The
tusk is composed of dentine (Fig. 2c—f) surrounded by
alveolar bone with a thin layer of cementum preserved
(Fig. 2f). A thin periodontal space is apparent around the
tusk with Sharpey’s fibres in the alveolar bone indicative
of a gomphosis (Fig. 2f). The highly irregularly deposited
dentine is more exaggerated in the apex of the root and
the irregular patterning is consistent on both the labial
and lingual margins (Fig. 2b). Towards the tip of the tusk,
the irregular infolding is restricted to the posterolingual
aspect of the tusk (Fig. 2d). Similar to the Lystrosaurus
specimen, the unusual dentine shape in NHCC LB836
isreflected in the periodic depositional lines (also approxi-
mately 20 um apart) as well as the dentine tubules
(Fig. 2¢).

DISCUSSION

Infolded dentine has been recognized in the roots of
numerous groups of amniotes including Captorhinidae,
Choristodera, Diadectomorpha, Ichthyosauria, Lepido-
sauria, Parareptilia and Sphenacodontidae (Brink et al.
2014; MacDougall et al. 2014; Maxwell et al. 2011; Meunier
et al. 2013). Typically, the shape of the infolded dentine
is regular and symmetrical, and has been termed plici-
dentine (Owen 1841; Tomes 1878). Although the dentine
infoldings observed here are lobed like plicidentine,
the distribution and depth of infoldings around the
cross-sectional area is highly irregular. Additionally, lobed
morphology has not been observed in the tusk roots
of other dicynodont specimens that have been thin-
sectioned (Thackeray 1991; Green 2012; Jaskinoski &
Chinsamy-Turan 2012a; LeBlanc et al. 2018) nor are they
visible in the contralateral maxilla of NHCC LB&836,
suggesting that the instances described here are anoma-
lies. Although not examined under thin section, the long
axis of the tusk of Odontocyclops whaitsi (AMNH 5566) does
present some infolding (Angielczyk 2002), although it
appears more regular than the infolding seen in SAM-
PK-K011603 or NHCC LB836. The infolding observed in
Odontocyclops could be a different abnormality or a differ-
ent morphology formed from a similar etiology. How-
ever, without thin-sectioning, useful comparisons are
limited.

The peculiar cross-sectional morphology of these speci-
mens was formed by irregularities in the path of odonto-
blasts taken during their deposition of dentine, which is
evidenced by the correspondence of dentine tubules and
lines of von Ebner to the lobed morphology. Thus, there
is good evidence that the lobed anatomy is a depositio-
nal anomaly, yet its etiology is difficult to determine defin-
itively. It is interesting to note, however, that the lack
of infoldings towards the emerging end of the tusks
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suggests that normal dentine deposition had occurred
earlier in the individual’s life. Thus, a congenital anomaly
can be ruled out.

We suggest that trauma is the likely cause for the
peculiar root morphology observed in these specimens.
Mechanistically, the trauma could have resulted in either
irregular original deposition (ie. primary dentine) or
reparative deposition (i.e. secondary dentine). In cross-
section, the periphery of the tusks represents the earliest
site of dentine deposition and thus, the abnormal and
occasionally infolded margin could indicate that during
the onset of tissue deposition trauma resulted in irregular
odontoblast activity. Alternatively, secondary dentine
could have been deposited to repair damaged primary
dentine tissue giving rise to the unusual morphology,
with either scenario depending on the timing of an injury.
In either case, some external trauma to the tusk or maxilla
would likely present itself as unusual alveolar bone with
evidence of reparative bone. Surprisingly, we see no
evidence of malformations or trauma to the maxilla, but
given the rapid turnover rate of alveolar bone, it is possi-
ble that such evidence has been remodelled away (e.g.
Vignery & Baron 1980).

The folded morphology seen in these specimens is
remarkably similar to what has been described in modern
elephant tusks that have experienced trauma (Miles &
Grigson 1990) and in many ways, dicynodont tusks are
comparable to elephant tusks. The tusks of the Lystro-
saurus and the dicynodontoid described here were ever-
growing and anchored to the maxilla by a periodontal
ligament (i.e. gomphosis). Among therapsids, LeBlanc
et al. (2018) reported evidence for a ligamentous tooth
attachment in the cynodonts Diademodon, Cynognathus,
Galesaurus, the therocephalian Bauria, gorgonopsians and
tapinocephalids, and Jasinoski & Chinsamy (2012b) made
a similar report for Tritylodon. The tusks of elephants are
ever-growing and in cases of trauma, ‘the portion of the
tooth developing at the time of an injury usually has a
crinkled appearance with irregular formation increasing
towards the growing end and the tissues showing signs of
defective mineralization” (Miles & Grigson 1990: 404). In
elephants, the most common reported sources of trauma
are falling or fighting. In addition, tusk abrasion and wear
are frequent causes of damage in digging animals like
walruses (Steenkamp 2003). Digging and foraging have
been proposed as potential uses for dicynodonts tusks
(e.g. King 1990; King & Cluver 1991) and thus, it is unsur-
prising that they would occasionally accrue damage.

Despite being distinct species separated by millions of
years, SAM-PK-K011603 and NHCC LB836 share remark-
ably similar, albeit unusual, dental histology, which in
turn suggests the potential for similar behaviour and
utilization of their tusks. The limited sample here does
not preclude alternative functions in different species;
however, it does lend support that many — if not most
dicynodonts — used their tusks to forage and dig, and that
occasionally these activities resulted in trauma to their
developing dental tissues. Continued analysis of the
internal anatomy of dicynodont tusks will elucidate more
about their evolution and development as well as shed
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light on their functional significance. This study demon-
strates how given the lack of external, gross anatomical
indications of the abnormality noted here, histological
sampling is an important tool in garnering more informa-
tion about the biology of these animals.
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